Typically Dutch!

WETENSCHAPPELIJK ONDERZOEK VERKEERSVEILIGHEID

Henk Stipdonk

Walking and cycling in a sustainably safe system

Dr Henk Stipdonk henk.stipdonk@swov.nl

Henk Stipdonk

Outline

- Dutch crash data on walking and cycling.
- The relation between number of casualties, distance travelled and risk.
- The principles of *sustainable safety*.
- Safety Sensors (where to put the effort).
- Specific components of *sustainable safety* for walking and cycling.
- Recreational cycling infrastructure
- Current road safety policy issues.

All road deaths in NL since 2000

Henk Stipdonk

Risk (=deaths/distance travelled)

deaths = proportional to risk and to distance travelled

- More distance travelled => more deaths
- More risk => more deaths

Risk is far from uniform for all travel

Males travel more *and* more dangerously Three times more male victims than females

Risk differs for different travel modes

High risk and low travel for powered two wheelers Low risk and high travel for passenger cars Walking and cycling are intermediate modes

Pedestrian and bicycle risk by age (2010-2014)

Active travel modes are healthy, but unsafe We aim at reducing risk, not distance travelled (Mark the scales of the axes)

Henk Stipdonk

The secret behind Dutch road safety: Principles of *sustainable safety*

Proactive instead of reactive

- Determine the function of the road
- Design a safe road that follows this function
- Ensure a predictable vehicle course and speed, with recognizable road types
- Homogeneous vehicle mass & speed
- Build forgiving roadsides
- Improve safety

form follows

Forgiveness of roadsides

Less crashes, injuries deaths

Mass

Direction

Speed

Integrated approach

- Education
- Infrastructure
- Vehicle design
- Enforcement

Sustainable safety (safety by design). Make man the measure of the system.

- Accept that people are vulnerable, make mistakes and occasionally disobey the rules.
- Design a forgiving traffic system.
- Use human factors, cognitive ergonomics and physical tolerance to design the system.
- Change environment instead of man

System approach: Safe speeds

Conflict types	Inside urban areas	Outside urban areas
Cars, cyclists pedestrians mix	30 km/h	60 km/h
	speed bumps; NO bicycle paths	
Intersections conflicts: right angles	50 km/h	80 km/h
	Elevated intersection area; bicycle paths; traffic lights; roundabouts	
Frontal conflicts	70 km/h	120 km/h
cars	Speed enforcement; separate lanes on motorways	

Results: less road deaths

Less road deaths for cyclists and pedestrians

- 30km/h zones:
- Cycle paths:
- Roundabouts:
- 60km/h zones:

- 15 %
 - 24 %
 - 30 % (all: -75%)
- 32 %
- Result in NL: 300 to 400 less road deaths
- Ratio of benefit to cost = 4

Road infrastructure safety evaluation tools in the Netherlands

- Proactive quantitative
 - Sustainable safety test
 - RPS (v2.0)/iRAP
 - Safe and credible speed limits (SaCred)
 - Ranking the roads
- Proactive qualitative
 - Audits/inspections
 - Internal design checks
- Reactive
 - Network screening
 - Blackspots/BSM

Infrastructure Measures that work

www.swov.nl

A word about serious injuries

- Crashes with motorized vehicles are prevented by the *sustainable safety* approach.
- However, cyclists can get seriously injured by "just" falling of their bike, especially 60+.
- These crashes are partly related to some sustainable safety measures (poles etc.).
- Hence: a serious injury cycling problem in the Netherlands.

Recent improvements Walking and cycling:

- Further infrastructure improvements
- Improved side view for trucks and vans (blind spot mirror)
- Passenger car safety improvements (both passive and active)
- Cycling:
- Improved quality of bicycle lights
- Removal of poles etc. on bicycle paths.

Safety sensors (such as the SCN) to identify unsafe locations (See www.SWOV.nl R2014-14E)

Recreational cycling

- Mandatory cycle paths (along roads with cars, trucks...)
- Non mandatory cycle paths e.g. in recreational regions.

Literature: SWOV R2014-14E SCN

Henk Stipdonk

Conclusions

- 1. Walking and cycling are healthy but unsafe: cyclists live a year longer due to health effects (minus 9 days due to road safety effects).
- 2. Fatalities and serious injuries are different issues.
- 3. Just as car safety, bicycle and pedestrian safety are multidimensional problems.
- 4. Many effective measures available.
- 5. Development of SPI's and safety sensors.
- 6. Implementation is difficult; SWOV helps provinces and municipalities to find ways to improve safety.

But the bottom line is:

Love walking and cycling

Henk Stipdonk