TIST

The importance of the GSR for the future of vehicle safety Casualty impact and cost-effectiveness evaluation

Vision

Relentless

World leader in creating the future of transport and mobility, using evidence-based solutions and innovative thinking

Mission

Challenge and influence our chosen markets, driving sustained reductions (ultimately to zero) in:

- fatalities and serious injuries
- harmful emissions
- barriers to inclusive mobility
- unforeseen delays
- cost inefficiencies

...enabling world-class transport and mobility solutions that underpin the needs of tomorrow's economy and society

Brand Values

Inquisitive

Progressive

Trusted

TRL...a track record of delivering impactful innovation

2018

the future of transport.

© 2018 TRL Ltd

Self-driving Citroën DS19, 1969

Comparison of US and EU28 Road Deaths

Policy making in a 'Smarter World'

Changing times ...

- The digital 'revolution'
 - IoT, Smart Cities & Connected Highways
- Changing population characteristics
 - Fewer young people gaining car driving licences & proportionally more elderly people using vehicles
 - Reductions in individual vehicle ownership, car share ...
- Changing vehicle fleet
 - More SUVs & light weight vehicles
 - ULEVs more electric & hybrid vehicles
 - Advanced Driver Safety Systems (ADAS)

Connected & Autonomous Vehicles (CAVs)

Safety Efficiency Environment Mobility

. @Jesse_Norman MP announces the UK government's review of driving laws in preparation for self-driving vehicles with the @GATEway_TRL team - Europe's 1st selfdriving public service trials @transportgovuk @ccavgovuk gov.uk/government/new ...

Changing world: Connected and Automated Vehicles

Consolidation of automated driving roadmaps

□ Roadmaps in the field of "automated driving"

	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Parking																
		Remote Parking (Level 2)				Driverless Valet Parking (Level 4)										
Traffic larr																
i ranic Jan	Assistance	(Level 2)	C	Chauffeur	(Level 3)											
_	-															
Highway		Chauffeur (Level 3)							Pilot (Level 4)							
City		In	tersection (Le	n Assistar vel 2)	псе		Local R (Le	obot Taxi vel 4)				Urban I	Robot Tax	ki (Level 5	5)	
All situatio	ns											Driverl	ess Trucl	Bus/ Ta</td <td>ixi (Level</td> <td>5)</td>	ixi (Level	5)
													Driver	less Priva	ite Car (L	evel 5)

the future of transport.

© 2018 TRL Ltd

General Safety Regulation and Pedestrian Safety Regulation

European Union

General Safety Regulation and Pedestrian Safety Regulation

Casualty impact and cost-effectiveness evaluation for the Commission proposal on General Vehicle Safety

Objective:

To calculate concrete cost-effectiveness indicators and numbers of road casualties that could be prevented at an EU-28 level for sets of safety measures proposed by the European Commission and considered for mandatory implementation in new vehicles.

Study scope

The specific scope of the study was defined as:

- Geographic scope: EU-28
- Vehicle categories covered: Cars [M1], Buses [M2&M3], Vans [N1], Trucks [N2&N3]
- Evaluation period: 2021–2037
- Baseline scenario: No further policy intervention in the transport sector, but voluntary improvements and effects of already implemented policies continue: Continued dispersion of mandatory vehicle safety measures into the legacy fleet and continued voluntary uptake of the safety measures under consideration.
- Action scenario: 17 safety technologies made mandatory according to Commission proposal.

Measure	Description	Applicable vehicle categories				
AEB-VEH	Autonomous emergency braking for vehicles (moving and stationary targets)	M1		N1		
AEB-PCD	Autonomous emergency braking for pedestrians and cyclists	M1		N1		
ALC	Alcohol interlock installation document	M1	M2&M3	N1	N2&N3	
DDR-DAD	Drowsiness and attention detection	M1	M2&M3	N1	N2&N3	
DDR-ADR	Advanced distraction recognition	M1	M2&M3	N1	N2&N3	
EDR	Event data recorder	M1		N1		
ESS	Emergency stop signal	M1	M2&M3	N1	N2&N3	
FFW-137	Full-width frontal occupant protection (current R137 configuration with Hybrid III ATDs)	M1		N1		
FFW-THO	Full-width frontal occupant protection (introduction of THOR-M ATDs and lower appropriate injury criteria thresholds to encourage adaptive restraints)	M1		N1		
HED-MGI	Adult head-to-windscreen impact (mandatory HIC limit in headform-to-glass	M1		N1		
ISA-VOL	Intelligent speed assistance (voluntary type system; can be overridden by driver and switched off for the rest of journey)	M1	M2&M3	N1	N2&N3	
LKA-ELK	Lane keeping assist (emergency lane keeping system that intervenes only in case of an imminent threat such as leaving the road, or leaving the lane with oncoming traffic)	M1		N1		
PSI	Pole side impact occupant protection	M1		N1		
REV	Reversing camera system	M1	M2&M3	N1	N2&N3	
ТРМ	Tyre pressure monitoring system		M2&M3	N1	N2&N3	
VIS-DET	Front and side vulnerable road user detection and warning (no auto braking)		M2&M3		N2&N3	
VIS-DIV	Minimum direct vision requirement (best-in-class approach)		M2&M3		N2&N3	

Measure	M1	M2&M3	N1	N2&N3
AEB-VEH	В		В	
AEB-PCD	С		С	
ALC	В	В	В	В
DDR-DAD	В	В	В	В
DDR-ADR	С	С	С	С
EDR	В		В	
ESS	В	В	В	В
FFW-137	В		В	
FFW-THO	В		В	
HED-MGI	С		С	
ISA-VOL	В	В	В	В
LKA-ELK	В		В	
PSI	В		В	
REV	В	В	В	В
ТРМ		В	В	В
VIS-DET		В		В
VIS-DIV		D		D

Introduction dates assumed for costeffectiveness analysis (evaluation period: 2021–2037)

- B = 01/09/2021 new approved types, 1/09/2023 new vehicles
- C = 01/09/2023 new approved types, 1/09/2025 new vehicles
- D = 01/09/2025 new approved types, no mandatory introduction for new vehicles

Actual introduction dates might deviate (see Commission Proposal)

Study scope (cont'd)

- Benefits considered: Monetary values of casualties prevented (fatal, serious, slight) by safety measures
- Costs considered: Cost to vehicle manufacturers (OEMs) of fitment of safety measures to new vehicles
- Treatment of uncertainty: Interval analysis and scenario analysis
- Results: Benefit-to-cost ratios (BCRs) and numbers of casualties prevented. All results are in comparison to the baseline scenario.

Method

Note that the model takes into account:

- The interactions of all measures when implemented together (to avoid double-counting of casualties prevented by different measures)
- The voluntary uptake of the proposed measures expected to happen without policy intervention (baseline scenario)
- The effects of already existing mandatory measures, which are still dispersing into the fleet (AEBS and LDWS for trucks and buses, ESC for all categories)

European fleet and new registrations:

Uptake of safety measures into the fleet:

Voluntary scenario:

Mandatory scenario:

Percentage of all cars within the vehicle fleet equipped with pedestrian-capable AEB in baseline (voluntary uptake) and mandatory implementation scenario modelled

<u>-IS</u>

Target population estimates, EU-28 Casualty typology

Vehicle category		Collisions	Casualties (Vehicle 1)			Casualties (Vehicle 2)			
Vehicle 1	Vehicle 2		Fatal	Serious	Slight	Fatal	Serious	Slight	
M1	none	127,635	5,405	33,198	129,912	n/a	n/a	n/a	
M2M3	none	5,313	50	818	6,625	n/a	n/a	n/a	
N1	none	7,475	338	1,687	7,305	n/a	n/a	n/a	
N2N3	none	4,456	222	1,209	3,578	n/a	n/a	n/a	
PTW	none	52,552	1,667	16,652	38,205	n/a	n/a	n/a	
Cyclist	none	25,686	335	7,662	17,848	n/a	n/a	n/a	
Other	none	4,301	317	1,500	3,239				
M1	M1	252,173	2,900	37,283	367,874	n/a	n/a	n/a	
INIT	IVIZIVI3	<u>୪,୨୪</u> ৮	194	808	5,254	13	580	8,823	
M1	N1	32,931	552	3,720	30,590	111	1,320	13,459	
M1	N2N3	23,967	1,456	4,583	22,809	35	483	3,522	
M1	PTW	130,523	35	731	8,797	1,939	30,768	106,274	
M1	Pedestrian	109,876	17	206	1,980	3,600	27,549	83,758	
M1	Cyclist	103,824	7	123	1,581	1,005	16,833	86,001	
M1	Other	13,203	331	1,469	9,247	114	1,246	5,628	

Safety measure effectiveness

TISL

For each safety measure ...

Casualty target population x Effectiveness value = Predicted casualty population

- 'Avoidance' describes a situation where casualties would remain entirely uninjured after application of the effective safety measure
- 'Mitigation' describes a situation where casualties would sustain injuries of a lower severity level (e.g. fatal turned to serious casualty, or serious to slight casualty)
 - An effective passive safety measure prevents the most severe injuries, or
 - An active safety measure reduces the impact speed.
- Measures have been assigned separate values for effectiveness of avoidance and mitigation at all injury severity levels.
- It should be noted that effectiveness values for avoidance and mitigation are additive in this model. 'Mitigated' casualties are subsequently added to the target population of the next lower injury severity level for other measures.

Safety measure effectiveness (cont'd)

For each safety measure ...

- The effectiveness values were based on evidence extracted from research studies and stakeholder input
- Where no values could be identified and no stakeholder input was provided, a road safety expert panel determined best estimates from the available evidence
- For the interval and scenario analysis, effectiveness values were assigned a confidence level (high or low depending on the quality of the source) and the best estimates were varied as follows in order to determine the upper and lower estimates:
 - Plus/minus 10% for high confidence estimates

(for example, a value of 40% would be varied ± 4 percentage points, i.e. 36% to 44%)

Plus/minus 20% for low confidence estimates

Avoidance of double-counting of casualties prevented

Monetisation of casualties prevented & safety measure costs

Benefit valuation:

Casualty severity	Social unit value
Fatality prevented	€1,870,000
Serious casualty prevented	€243,100
Slight casualty prevented	€18,700

Cost valuation:Initial OEM cost per vehicle for full set of measuresCars (M1)€516Buses (M2&M3)€970Vans (N1)€521Trucks (N2&N3)€1,013

Economic Calculation

Simulation and Calculation model included

- Discounting of costs and benefits
 - A 'social discount rate' is applied to reflect the fact that benefits and costs further ahead in the future are valued lower than present benefits and costs
- Inflation of monetary values
- Sensitivity analysis
- To quantify the range uncertainty around the best estimate BCR values, two sensitivity analysis techniques common in cost-benefit evaluations were applied (Bickel, et al., 2006a): Interval analysis and Scenario analysis - impact of additional safety measures on vehicle prices and sales numbers

Note: Impact of additional safety measures on vehicle prices and sales numbers

 Cars have become cheaper in real terms in every year of the last reported decade, despite this being a period in which technical development to meet new and more demanding environmental and safety standards increased

Key results

Key Results

Cost-effectiveness

Benefit-to-cost ratios (BCR) of the Commission Proposal

Values greater than 1 indicate that the benefits are greater than the costs

© 2018 TRL Ltd

Number of casualties prevented by safety measures split by vehicle categories over the evaluation period 2021–2037 across EU-28 compared to the baseline scenario

	Cars	Buses	Vans	Trucks
Fatalities prevented	21,337	227	1,283	1,947
Serious casualties prevented	126,390	2,410	6,917	5,023
Slight casualties prevented	470,747	8,174	23,486	13,274

Key Results

Casualties prevented Total sum; years 2021–2037; EU-28; compared to the baseline scenario

	All categories
Fatalities prevented	24,794
Serious casualties prevented	140,740
Slight casualties prevented	515,681

Conclusions

Conclusions

The Commission proposal on General Vehicle Safety:

- An ambitious proposal to reduce the number of deaths and injuries on EU roads Savings of almost 25,000 fatalities and 140,000 serious casualties over a 16-year period
- Cost-effective **Benefits to society exceed the costs** with a BCR of 1.27
- Substantial increase in consumer vehicle prices <u>not</u> expected in the medium and long term
- Technologically advanced helping the EU Industry to remain competitive with regard to the challenges of developing automated vehicles, because it includes measures such as Advanced Driver Distraction Recognition, Intelligent Speed Assistance and Vulnerable Road User Detection.

Richard Cuerden, TRL Academy Director Email: rcuerden@trl.co.uk Twitter: @rcuerden trl

Crowthorne House | Nine Mile Ride | Wokingham | Berkshire | RG40 3GA | UK

