The importance of the GSR for the future of vehicle safety *Results of the Impact Assessment study*

TIRL

Vision

World leader in creating the future of transport and mobility, using evidence-based solutions and innovative thinking

Mission

Challenge and influence our chosen markets, driving sustained reductions (ultimately to zero) in:

- fatalities and serious injuries
- harmful emissions
- barriers to inclusive mobility
- unforeseen delays
- cost inefficiencies

...enabling world-class transport and mobility solutions that underpin the needs of tomorrow's economy and society

Brand Values

		Truetad	Dalantlass
induisitive	I Progressive	i irusted i	Keientiess

Google Car

TISL

Changing world: Connected and Automated Vehicles

Consolidation of automated driving roadmaps

 $_{\hfill \Gamma}$ Roadmaps in the field of "automated driving"

the future of transport.

© 2018 TRL Ltd

TISL

Cost-effectiveness analysis of Policy Options for the mandatory implementation of different sets of vehicle safety measures – Review of the GSR and PSR

Objective:

To calculate concrete cost-effectiveness indicators and numbers of future casualties that could be prevented at an EU-28 level for three sets of safety measures proposed by the European Commission and considered for mandatory implementation in new vehicles starting from 2021.

© 2018 TRL Ltd

Methodology and Scope

The European Commission defined three Policy Options, sets of safety measures to be implemented on a mandatory basis:

- PO1: State-of-the-art and widely available package of safety solutions that are not yet mandatory in EU; their fitment varies from around 5–90%
- PO2: As PO1 with added safety solutions that focus on vulnerable road user protection and on ensuring driver attention to the driving task
- PO3: As PO2 with safety solutions that are either feasible or already exist in the marketplace, but that have a low fitment rate and market uptake, that maximises overall casualty savings and can boost safety solutions' innovation

The policy options are each studied for their **cost-effectiveness compared to a baseline scenario (PO0)**, where none of the measures are implemented on a mandatory basis, but voluntary uptake would continue.

© 2018 TRL Ltd

Policy Options M1

Measure	Baseline	PO1 (M1)	PO2 (M1)	PO3 (M1)	A = 01/09/2021 ne
AEB-VEH	-	А	А	А	approved types,
AEB-PCD	-	-	В	В	1/09/2023 new vel
ALC	-	А	А	А	
DDR-DAD	-	-	А	А	B = 01/09/2023 ne
DDR-ADR	-	-	-	В	approved types,
EDR	-	А	А	А	1/09/2025 new vel
ESS	-	А	А	А	6 01 100 10005
FFW-137	-	А	А	А	C = 01/09/2025, no
FFW-THO	-	-	А	А	for new yehs
HED-MGI	-	-	В	В	
ISA-VOL	-	-	А	А	
LKA-ELK	_	А	А	А	
PSI	-	А	А	А	
REV	_	_	-	А	

ew hs

w hs

0 uction

© 2018 TRL Ltd

Policy Options M2&M3

Measure Baseline PO1 (M2&M3) PO2 (M2&M3) PO3 (M2&M3) A = 01/09/2021 new approved types, 1/09/2023 new vehs ALC – A A A A A Approved types, 1/09/2023 new vehs 1/09/2023 new vehs 1/09/2023 new vehs 1/09/2023 new vehs B = 01/09/2023 new vehs B = 01/09/2023 new vehs B = 01/09/2023 new vehs Approved types, 1/09/2023 new vehs Approved types, 1/09/2023 new vehs Approved types, 1/09/2023 new vehs Approved types, 1/09/2025 new vehs C = 01/09/2025 new vehs Approved types, 1/09/2025 new vehs Approved types, 1/09/2025 new vehs Approved types, 1/09/2025 new vehs C = 01/09/2025, no mandatory introduction for powershes VIS-DIV – – C C C = 01/09/2025, no mandatory introduction for powershes						
ALC-AAAapproved types, approved types, 1/09/2023 new vehsDDR-DADAAADDR-ADRBBESS-AAAB = 01/09/2023 new approved types, 1/09/2023 new approved types, 1/09/2025 new vehsREVAAAVIS-DETAAC = 01/09/2025, no mandatory introduction for powerback	Measure	Baseline	PO1 (M2&M3)	PO2 (M2&M3)	PO3 (M2&M3)	A = 01/09/2021 new
DDR-DAD – A A A 1/09/2023 new vehs DDR-ADR – – A A A 1/09/2023 new vehs ESS – A A A B = 01/09/2023 new approved types, ISA-VOL – – A A A B = 01/09/2023 new approved types, REV – – A A A B = 01/09/2023 new approved types, TPM – – A A A B = 01/09/2025 new vehs VIS-DET – – A A A C = 01/09/2025, no mandatory introduction for nonwaba VIS-DIV – – C C C D/09/2025, no mandatory introduction for nonwaba	ALC	-	А	А	А	approved types.
DDR-ADR - B ESS - A A A B = 01/09/2023 new approved types, approved types, 1/09/2025 new vehs ISA-VOL - - A A A B = 01/09/2023 new approved types, 1/09/2025 new vehs REV - - A A A C = 01/09/2025 new vehs TPM - - - A C = 01/09/2025, no mandatory introduction for paywabs VIS-DIV - - C C C = 01/09/2025, no mandatory introduction for paywabs	DDR-DAD	-	-	А	А	1/09/2023 new vehs
ESS A A A B = 01/09/2023 new approved types, approved types, 1/09/2025 new vehs ISA-VOL - - A A B = 01/09/2023 new approved types, 1/09/2025 new vehs REV - - A A B = 01/09/2023 new approved types, 1/09/2025 new vehs TPM - - - A C = 01/09/2025 new vehs VIS-DET - A A A C = 01/09/2025, no mandatory introduction for powershes	DDR-ADR	-	-	-	В	
ISA-VOL-AAapproved types, 1/09/2025 new vehsREVA1/09/2025 new vehsTPMAAVIS-DET-AAC = 01/09/2025, no mandatory introduction for new vehs	ESS	-	А	А	А	B = 01/09/2023 new
REV - - A 1/09/2025 new vehs TPM - - A A VIS-DET - A A C = 01/09/2025, no mandatory introduction for powersho. VIS-DIV - - C C C	ISA-VOL	-	-	А	А	approved types,
TPM - - A VIS-DET - A A C = 01/09/2025, no mandatory introduction for nonvents VIS-DIV - - C C C	REV	-	-	-	А	1/09/2025 new vehs
VIS-DET $ A$ A $C = 01/09/2025$, no mandatory introductionVIS-DIV $ C$ C C	ТРМ	-	-	-	А	
VIS-DIV – – C C mandatory introduction	VIS-DET	-	-	А	А	C = 01/09/2025, no
	VIS-DIV	-	-	С	С	mandatory introduction

Policy Options N1

Measure	Baseline	PO1 (N1)	PO2 (N1)	PO3 (N1)	$A = 01/09/202^{-1}$
AEB-VEH	-	А	А	А	approved types
AEB-PCD	-	-	В	В	1/09/2023 new
ALC	-	А	А	А	
DDR-DAD	-	-	А	А	B = 01/09/2023
DDR-ADR	-	-	-	В	approved types
EDR	-	А	А	А	1/09/2025 new
ESS	-	А	А	А	6 01 (00 (202)
FFW-137	-	-	-	А	C = 01/09/2025
FFW-THO	-	-	-	А	for new vehs
HED-MGI	-	-	В	В	
ISA-VOL	-	-	-	А	
LKA-ELK	-	А	А	А	
PSI	-	-	-	А	
REV	-	-	-	А	
ТРМ	-	-	-	А	

1 new s, w vehs

3 new es, w vehs

5, no roduction

© 2018 TRL Ltd

Policy Options N2&N3

Measure	Baseline	PO1 (N2&N3)	PO2 (N2&N3)	PO3 (N2&N3)	A = 01/09/2021 new
ALC	-	А	А	А	approved types.
DDR-DAD	-	-	А	А	1/09/2023 new vehs
DDR-ADR	-	-	-	В	
ESS	-	А	А	А	B = 01/09/2023 new
ISA-VOL	-	-	А	А	approved types,
REV	-	-	-	А	1/09/2025 new vehs
ТРМ	-	-	-	А	
VIS-DET	-	-	А	А	C = 01/09/2025, no
VIS-DIV	-	-	С	С	for new vehs

Simulation and Calculation Model

The scope of the cost-effectiveness evaluation was:

- Geographic scope: EU-28
- Vehicle categories covered: M1, M2&M3, N1, N2&N3
- Evaluation period: 2021–2037
- Baseline scenario: No further policy intervention in the transport sector, but voluntary improvements and effects of already implemented policies continue. Continued dispersion of mandatory vehicle safety measures into the legacy fleet and continued voluntary uptake of the safety measures under consideration.

Simulation and Calculation Model

- Evaluated scenarios: Three sets of safety measures (PO1, PO2 and PO3) implemented on a mandatory basis
- Benefits considered: Monetary values of casualties prevented by safety measures
- Costs considered: Cost to vehicle manufacturers of fitment of safety measures to new vehicles
- Treatment of uncertainty: Interval analysis and scenario analysis
- Results: Benefit-to-cost ratios (BCRs), based on present monetary values and casualties prevented, compared to the baseline scenario over the entire evaluation period

Simulation and Calculation Model

Note that the model takes into account:

- The interactions of all measures when implemented together (to avoid double-counting of casualties prevented by different measures), and
- The effects of already existing mandatory measures (AEB-VEH and LDW for M2&M3 and N2&N3, ESC for all categories) that are still dispersing into the fleet on the European casualty target populations.

© 2018 TRL Ltd

Vehicle fleet size

the future of transport.

© 2018 TRL Ltd

TIRL

Fleet dispersion of safety measures

Percentage of all cars within the vehicle fleet equipped with pedestrian-capable AEB in voluntary uptake scenario

Percentage of all cars within the vehicle fleet equipped with pedestrian-capable AEB in mandatory implementation scenario (new approved types from 2023, all new cars from 2025)

Casualty baseline

© 2018 TRL Ltd

TIRL

Target population estimates, EU-28 Casualty typology

Vehicle	category	Collisions	Casu	Casualties (Vehicle 1) Ca		Casu	Casualties (Vehicle 2)	
Vehicle 1	Vehicle 2		Fatal	Serious	Slight	Fatal	Serious	Slight
M1	none	127,635	5 <i>,</i> 405	33,198	129,912	n/a	n/a	n/a
M2M3	none	5,313	50	818	6,625	n/a	n/a	n/a
N1	none	7,475	338	1,687	7,305	n/a	n/a	n/a
N2N3	none	4,456	222	1,209	3,578	n/a	n/a	n/a
PTW	none	52,552	1,667	16,652	38,205	n/a	n/a	n/a
Cyclist	none	25,686	335	7,662	17,848	n/a	n/a	n/a
Other	none	4,301	317	1,560	3,239	n/a	n/a	n/a
M1	M1	252,173	2,900	37,283	367,874	n/a	n/a	n/a
M1	M2M3	8,986	194	808	5,254	13	580	8,823
M1	N1	32,931	552	3,720	30,590	111	1,320	13,459
M1	N2N3	23,967	1,456	4,583	22,809	35	483	3,522
M1	PTW	130,523	35	731	8,797	1,939	30,768	106,274
M1	Pedestrian	109,876	17	206	1,980	3,600	27,549	83,758
M1	Cyclist	103,824	7	123	1,581	1,005	16,833	86,001
M1	Other	13,203	331	1,469	9,247	114	1,246	5,628

© 2018 TRL Ltd

Safety measure effectiveness

For each safety measure ...

Casualty target population x Effectiveness value = Predicted casualty population

- 'Avoidance' describes a situation where casualties would remain entirely uninjured after application of the effective safety measure
- 'Mitigation' describes a situation where casualties would sustain injuries of a lower severity level (fatal turned to serious casualty, or serious to slight casualty)
 - An effective passive safety measure prevents the most severe injuries, or
 - An active safety measure reduces the impact speed.
- Measures have been assigned separate values for effectiveness of avoidance and mitigation at all injury severity levels.
- It should be noted that effectiveness values for avoidance and mitigation are additive in this model. 'Mitigated' casualties are subsequently added to the target population of the next lower injury severity level for other measures.

© 2018 TRL Ltd

Safety measure effectiveness

- The effectiveness values were based on the values determined by TRL (Seidl, et al., 2017) in preparation of this study (extracted from research studies and stakeholder input).
- Where no values could be identified during the course of this review and where no stakeholder input was provided, a road safety expert panel at TRL determined best estimates from the available evidence
- For the interval and scenario analysis, effectiveness values were assigned a confidence level (high or low depending on the quality of the source) and the best estimates were varied as follows in order to determine the upper and lower estimates:
 - Plus/minus 10% for high confidence estimates
 - (for example, a value of 40% would be varied ± 4 percentage points, i.e. 36% to 44%)
 - Plus/minus 20% for low confidence estimates

© 2018 TRL Ltd

Avoidance of double-counting of casualties prevented

Monetisation of casualties prevented & Safety measure costs

Casualty severity	Social unit cost
Fatal	€1,870,000
Serious	€243,100
Slight	€18,700

Initial cost per vehicle	PO1	PO2	PO3
Passenger cars (M1)	€201	€360	€516
Buses and coaches (M2&M3)	€6	€607	€970
Vans (N1)	€131	€206	€521
Trucks (N2&N3)	€6	€607	€1,013

Economic Calculation

Simulation and Calculation model included

- Impact of additional safety measures on vehicle prices and sales numbers
 - Cars have become cheaper in real terms in every year of the last reported decade, despite this being a period in which technical development to meet new and more demanding environmental and safety standards increased
 - However, we assumed costs would increase based on the TRL (Seidl, et al., 2017) study
- Discounting of costs and benefits
 - A 'social discount rate' is applied to reflect the fact that benefits and costs further ahead in the future are valued lower than present benefits and costs
- Inflation of monetary values
- Sensitivity analysis
 - To quantify the range uncertainty around the best estimate BCR values, two sensitivity analysis techniques common in cost-benefit evaluations were applied (Bickel, et al., 2006a): Interval analysis and Scenario analysis.
- Data sources and stakeholder validation

© 2018 TRL Ltd

Key Results

Values > 1 indicate that the benefits are greater than the costs

© 2018 TRL Ltd

Key Results

Total sum of casualties prevented by safety measures across all vehicle categories over the evaluation period 2021–2037 across EU-28 compared to the baseline scenario (best estimate)

All categories	PO1	PO2	PO3
Fatalities prevented	14,639	22,951	24,794
Serious casualties prevented	67,647	118,933	140,740
Slight casualties prevented	288,293	421,562	515,681

Key Results

© 2018 TRL Ltd

Conclusions

- Overall PO1 offers favourable cost-effectiveness ratios in most vehicle categories, but these are achieved with only a small impact on both the costs and the casualty benefits compared to the baseline scenario of continued voluntary uptake.
- The impacts of PO2 and PO3 are larger, with numbers of fatalities prevented exceeding those of PO1 by a considerable margin, but this is accompanied by a greater cost.
- Where PO2 or PO3 exceed the threshold to cost-effectiveness (BCR>1), the considerably greater number of casualties prevented is a compelling reason to implement PO2 or PO3.
- PO3 represents the:
 - Most ambitious option to reduce the number of deaths and injuries on EU-28 roads
 - Most relevant option to address future road casualty trends
 - Most technologically advanced helping the EU Industry to remain competitive with regard to the challenges of developing Automated vehicles, because it includes measures such as Advanced Driver Distraction Recognition and Reverse Camera Systems.

© 2018 TRL Ltd

Richard Cuerden, TRL Academy Director Email: rcuerden@trl.co.uk Twitter: @rcuerden_trl

Crowthorne House | Nine Mile Ride | Wokingham | Berkshire | RG40 3GA | UK

