Data led work-related road safety

Dr Will Murray
Interactive Driving Systems

BTC			Pizer
SIEMENS	Gohmonafohmon	Mondelēe	2.011
ASDA	Roche.	(1)	
$\triangle \mathrm{IRON}_{\text {MOUNTAIN }}{ }^{\text {- }}$	$M^{c} \mathrm{Cat}$ It's all good		Rentokil Initial

Contents

- Why
- Collision causes
- How:
- Understand risks \& costs
- Manage risks using systems based approach
- Evaluate
- Societal:
- Driving is biggest risk workers, commuters \& local communities face
- Legal:
- Transport, OHS - 89/391/EEC
- Vehicle = workplace for OHS - HSE/DfT
- Business:
- Good practice, reputation, brand, CSR
- Financial:

- Hidden costs twice actual \& impact profitability
- Injuries impact individual (57\%, Company (20\%) \& Society (23\%)
- Drivers are the main cause of work-related road collisions
- Managers are the main cause of work-related road collisions

men
 Behind the wheel outcomes

Benefit of BTW starts before training undertaken!

- All employees $=0.029$ claims per year, never trained $=0.025$
- Training $=0.347$ per year before training - falling to 0.125 after training
- Claim rate improved with training, but still 5^{*} higher than 'never trained' group
- Regression to the mean makes up approx. half of training impact
- Work-related road safety goes beyond drivers

Creating a Crash Free Culture

Research shows that:

'Fleet safety is most likely to be improved by the introduction of an integrated set of measures based on the safety culture within the organisation'
TRL, MUARC, CARRS-Q

	Management Culture (30\%)	$\begin{array}{\|l} \hline \begin{array}{l} \text { Journey } \\ (10 \%) \end{array} \end{array}$	Road/ Site Environment (10\%)	People - Drivers and Managers (20\%)	Vehicle (10\%)	External/ Societal/ Community/ Brand (20\%)
PreCrash or PreDrive	Leadership Business case Legal compliance Safety review Benchmarking Pilot studies Goals \& policies Safety culture Committee Pledge Communications Contractors	Travel policy Mode choice Journey planning Routing Risk assessment Emergency preparation Shifts/ working time	Risk assess Observation Guidelines Site layouts Work permits Site rules Road design Hot-spot mapping Engage local road agencies	Recruit Contract Induct Check qualified Handbook Risk assess Train Equip Communicate Engage Monitor Correct	Risk assess Select Specification Safety features Service Maintain Check Use policy Mobile comms ITS/telematics Wear \& tear Grey fleet	Regulator/policy engagement CSR Benchmarking Communications Family members Community Road safety weeks/ days Awards
At Scene	Emergency support to driver	Engage local investigators	Manage scene	Process to manage scene	Crashworthy 'ITS' data capture	Escalation process
PostCrash	Report, record \& investigate Change process Data linkages, evaluation \& KPIs	Debrief \& review journeys	Investigate and improve Review site/road elements of collision data	Reporting and investigation Driver debrief Counselling, trauma support Reassess/train	Strong openable doors Investigate 'ITS' data Inspection \& repair	Manage reputation and community learning process

How to improve work-related road safety

Understanding \& targeting risks

Process data

Gap analysis

www.fleetsafetybenchmarking.net

10,30 *, 150 \& 300+ questions
 Others eg Zurich

Policy

Fleet safety, health and environmental policy

Leadership

Organisational leadership and culture

Journey and mobility management

Driver recruitment, induction, management \& wellbeing

Vehicle management

Vehicle selection, management \& security

Corporate responsibility

CSR \& community road safety

Outcomes data:

- Risk assessment
- Licence checks
- Claims
- Telemetry

How do you compare?
What does the data tell us?

Outcomes data:

- Risk assessment
- Licence checks
- Claims
- Telemetry
- Grey fleet

How do you compare?
What does the data tell us?

Risk assessment data

RoadRISK completions \mathbf{v} claims per 1,000 vehicles

Licence check data

Claim Type	\% of claims	\% of $€ \$ £ s$	$€ \$ £$ per claim	Total $€ \$ £$
Hit Rear	15	21	2621	2059853
Right of Way	9	14	2870	1323250
Hit Object	14	11	1400	1047451
Reversing	16	11	1219	1044558
Damage while Parked	18	11	1080	1022657
Undetected	7	6	1635	598481
Lost Control	2	6	5318	584974
Animals	5	6	2066	553734
Hit Stationary vehicle	3	3	2016	318526
Other (23 cat)	11	11	1877	1097834
Total	100	100	1784	9651319

© 2015 Interactive Driving Systems. All rights reserved

Driver level Pareto analysis

\% of drivers	\% of claims
10	29
20	46
50	77
80	93
100	100

MANAGER ${ }^{\text {® }}$

INTERACTIVE
DRIVING SYSTEMS

Telemetry data

BEHAVIOR CHANGE	
Performance Analytics: March - December, 2014	ALL XX Drivers *
Aggressive Events / 100 Miles Driven	$\mathbf{7 0 . 0 9 \%}$ Reduction
Speeding Events >15mph over the limit	91.87% Reduction
Speeding Events >10mph over the limit	$\mathbf{7 7 . 7 1 \%}$ Reduction
Reversing	$\mathbf{4 6 . 6 7 \%}$ Decrease (No Target)
Idling	$\mathbf{6 0 . 5 3 \%}$ Decrease (No Target)
Harsh Acceleration	20\% Increase
Harsh Braking	25\% Reduction
Harsh Cornering	$\mathbf{2 1 8 \%}$ Increase
Seatbelt Usage	$\mathbf{7 7 . 6 9 \%}$ Improvement in Usage

* Sales representatives in company cars

Driver risk management - IE

Online RoadRISK driver assessment (driver, vehicle, journey, behaviour)	Co 1 All	Co 1 Ireland	Co 2 All	Co 2 Ireland
Compliance rate	94\%	70\%	80\%	95\%
DRIVING LICENCE NOT checked in last 12 months	52\%	68.6\%	15\%	47.0\%
NO SAFETY POLICY awareness	7\%	15.1\%	1\%	1.3\%
DRIVES between midnight and 6 am	26\%	30.2\%	26\%	33.8\%
USES MOBILE COMMUNICATIONS while driving	33\%	44.8\%	9\%	29.1\%
>2 SPEEDING/MOVING VIOLATIONS in last 3 years	0\%	0.6\%	0\%	0.7\%
Drives outside COUNTRY OF RESIDENCE	16\%	26.2\%	4\%	21.2\%
Drives OWN VEHICLE for work purposes *	66\%	82.0\%	20\%	61.6\%
Driver undertakes minimal vehicle SAFETY CHECKS	42\%	44.2\%	13\%	42.1\%
High KNOWLEDGE	4\%	8.7\%	2\%	7.9\%
High BEHAVIOUR	25\%	43\%	14\%	27.2\%
RoadRISK overall: HIGH	3\%	5.2\%	1.6\%	2.3\%

* Supported by online Grey Fleet self verification module

Systems based process

CRASH FREE CULTURE:

Internal/external performance

 analytics.Reinforce mission critical, non-negotiable policies and standards designed to keep drivers (and the wider community) safe while driving for work purposes.

Global MIS/DATA HUB to monitor training and driver performance data.

Evaluation: does it work?

Rate of Incidents per 10,000 Orders

Work-related road safety: Case study of British Telecommunications (BT)
David Wallington ${ }^{2}$. Will Murray ${ }^{b}$. Phil Darby ${ }^{c}$. Robert Reside ${ }^{d}$, Stephen Ison ${ }^{\text {cª }}$

BT Claims per 1,000 vehs

Costs

Summary/recommendations

- Managing road risk at work: Why \& How?
- Understanding exposures \& making a business case are key starting points
- OHS \& data-led systems-based approach
- Managing drivers, vehicles \& mobility
- Next step:
- www.fleetsafetybenchmarking.net
- will.murray@virtualriskmanager.net

